Multi-Objective Optimization of Real-Time Task Scheduling Problem for Distributed Environments

Maghsood Salimi, Amin Majd, Mohammad Loni, Tiberiu Seceleanu, Cristina Seceleanu, Marjan Sirjani, Masoud Daneshtalab, Elena Troubitsyna

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

Real-world applications are composed of multiple tasks which usually have intricate data dependencies. To exploit distributed processing platforms, task allocation and scheduling, that is assigning tasks to processing units and ordering inter-processing unit data transfers, plays a vital role. However, optimally scheduling tasks on processing units and finding an optimized network topology is an NP-complete problem. The problem becomes more complicated when the tasks have real-time deadlines for termination. Exploring the whole search space in order to find the optimal solution is not feasible in a reasonable amount of time, therefore meta-heuristics are often used to find a near-optimal solution.We propose here a multi-population evolutionary approach for near-optimal scheduling optimization, that guarantees end-to-end deadlines of tasks in distributed processing environments. We analyze two different exploration scenarios including single and multi-objective exploration. The main goal of the single objective exploration algorithm is to achieve the minimal number of processing units for all the tasks, whereas a multi-objective optimization tries to optimize two conflicting objectives simultaneously considering the total number of processing units and end-to-end finishing time for all the jobs. The potential of the proposed approach is demonstrated by experiments based on a use case for mapping a number of jobs covering industrial automation systems, where each of the jobs consists of a number of tasks in a distributed environment.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 6th Conference on the Engineering of Computer Based Systems
JulkaisupaikkaNew York, NY, USA
KustantajaAssociation for Computing Machinery
ISBN (painettu)9781450376365
DOI - pysyväislinkit
TilaJulkaistu - 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa

Julkaisusarja

NimiECBS '19
KustantajaAssociation for Computing Machinery

Sormenjälki

Sukella tutkimusaiheisiin 'Multi-Objective Optimization of Real-Time Task Scheduling Problem for Distributed Environments'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Viittausmuodot