Marginal and simultaneous predictive classification using stratified graphical models

Henrik Nyman, Jie Xiong, Johan Pensar, Jukka Corander

    Tutkimustuotos: LehtiartikkeliArtikkeliTieteellinenvertaisarvioitu

    3 Sitaatiot (Scopus)

    Abstrakti

    An inductive probabilistic classification rulemust generally obey the principles of Bayesian predictive inference, such that all observed and unobserved stochastic quantities are jointly modeled and the parameter uncertainty is fully acknowledged through the posterior predictive distribution. Several such rules have been recently considered and their asymptotic behavior has been characterized under the assumption that the observed features or variables used for building a classifier are conditionally independent given a simultaneous labeling of both the training samples and those from an unknown origin. Here we extend the theoretical results to predictive classifiers acknowledging feature dependencies either through graphical models or sparser alternatives defined as stratified graphical models. We show through experimentation with both synthetic and real data that the predictive classifiers encoding dependencies have the potential to substantially improve classification accuracy compared with both standard discriminative classifiers and the predictive classifiers based on solely conditionally independent features. In most of our experiments stratified graphical models show an advantage over ordinary graphical models. An inductive probabilistic classification rule must generally obey the principles of Bayesian predictive inference, such that all observed and unobserved stochastic quantities are jointly modeled and the parameter uncertainty is fully acknowledged through the posterior predictive distribution. Several such rules have been recently considered and their asymptotic behavior has been characterized under the assumption that the observed features or variables used for building a classifier are conditionally independent given a simultaneous labeling of both the training samples and those from an unknown origin. Here we extend the theoretical results to predictive classifiers acknowledging feature dependencies either through graphical models or sparser alternatives defined as stratified graphical models. We show through experimentation with both synthetic and real data that the predictive classifiers encoding dependencies have the potential to substantially improve classification accuracy compared with both standard discriminative classifiers and the predictive classifiers based on solely conditionally independent features. In most of our experiments stratified graphical models show an advantage over ordinary graphical models.
    AlkuperäiskieliEi tiedossa
    Sivut1–22
    JulkaisuAdvances in Data Analysis and Classification
    DOI - pysyväislinkit
    TilaJulkaistu - 2015
    OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

    Viittausmuodot