Genetic programming evolved through bi-objective genetic algorithms applied to a blast furnace

Brijesh Kumar Giri, Frank Pettersson, Henrik Saxén, Nirupam Chakraborti

    Tutkimustuotos: LehtiartikkeliArtikkeliTieteellinenvertaisarvioitu

    57 Sitaatiot (Scopus)

    Abstrakti

    In this study, a new Bi-objective Genetic Programming (BioGP) technique was developed that initially attempts to minimize training error through a single objective procedure and subsequently switches to bi-objective evolution to work out a Pareto-tradeoff between model complexity and accuracy. For a set of highly noisy industrial data from an operational ironmaking blast furnace (BF) this method was pitted against an Evolutionary Neural Network (EvoNN) developed earlier by the authors. The BioGP procedure was found to produce very competitive results for this complex modeling problem and because of its generic nature, opens a new avenue for data-driven modeling in many other domains.
    AlkuperäiskieliEi tiedossa
    Sivut776–782
    Sivumäärä7
    JulkaisuMaterials and Manufacturing Processes
    Vuosikerta28
    Numero7
    DOI - pysyväislinkit
    TilaJulkaistu - 2013
    OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

    Keywords

    • Blast furnace
    • Evolutionary computation
    • Genetic algorithm
    • Multiobjective optimization
    • Neural network
    • Pareto

    Viittausmuodot