Abstrakti
τ-Li coefficients describe if a function satisfies the GeneralizedRiemann Hypothesis or not. In this paper we prove that certain values of theτ-Li coefficients lead to existence or non-existence of certain zeros. The firstmain result gives explicit numbers N1 and N2 such that if all real parts ofthe τ-Li coefficients are non-negative for all indices between N1 and N2, thenthe function has non zeros outside a certain region. According to the secondresult, if some of the real parts of the τ-Li coefficients are negative for someindex n between numbers n1 and n2, then there is at least one zero outside acertain region.
Alkuperäiskieli | Ei tiedossa |
---|---|
Sivut | 47–77 |
Julkaisu | Albanian Journal of Mathematics |
Vuosikerta | 14 |
Numero | 1 |
Tila | Julkaistu - 2020 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |