TY - JOUR
T1 - Experimentally determined thermodynamic properties of schapbachite (α-AgBiS2) below T = 700 K
AU - Tesfaye, Fiseha
AU - Taskinen, Pekka
N1 - This is my article published when I was working for the previous affiliation (Aalto University)
PY - 2014/3
Y1 - 2014/3
N2 - Thermodynamic properties of schapbachite (α-AgBiS2) in the phase assemblage α-AgBiS2-AgBi3S5-Bi have been studied by an EMF-technique. The EMF-measurements were made on the galvanic cell Pt(-)|Ag|AgI|AgBiS2 + AgBi3S5 + Bi|C|Pt(+), over the temperature range from (429 to 699) K. According to the EMF vs. temperature relations obtained, the enthalpy of the phase transformation from β-AgBi1+xS2 to α-AgBi 1+xS2, at T = (465.55 ± 5) K, was calculated to be (7.3 ± 2.1) kJ · mol-1. New experimentally determined thermodynamic properties of the bismuth-saturated schapbachite (α-AgBi1+xS2), for each temperature region of the stable phases Bi(s) and Bi(l), were generated and analysed in detail. Based on the experimental results, Gibbs free energies of sulfidation reactions including Ag, Bi(l), S2(g), Ag2S and Bi2S3 to produce the bismuth-saturated schapbachite (α-AgBi1+xS2) have been evaluated. It has been observed that within the temperature range from (474 to 680) K, schapbachite saturated with bismuth (α-AgBi1+xS 2) is thermodynamically more stable than the stoichiometric schapbachite (α-AgBiS2).
AB - Thermodynamic properties of schapbachite (α-AgBiS2) in the phase assemblage α-AgBiS2-AgBi3S5-Bi have been studied by an EMF-technique. The EMF-measurements were made on the galvanic cell Pt(-)|Ag|AgI|AgBiS2 + AgBi3S5 + Bi|C|Pt(+), over the temperature range from (429 to 699) K. According to the EMF vs. temperature relations obtained, the enthalpy of the phase transformation from β-AgBi1+xS2 to α-AgBi 1+xS2, at T = (465.55 ± 5) K, was calculated to be (7.3 ± 2.1) kJ · mol-1. New experimentally determined thermodynamic properties of the bismuth-saturated schapbachite (α-AgBi1+xS2), for each temperature region of the stable phases Bi(s) and Bi(l), were generated and analysed in detail. Based on the experimental results, Gibbs free energies of sulfidation reactions including Ag, Bi(l), S2(g), Ag2S and Bi2S3 to produce the bismuth-saturated schapbachite (α-AgBi1+xS2) have been evaluated. It has been observed that within the temperature range from (474 to 680) K, schapbachite saturated with bismuth (α-AgBi1+xS 2) is thermodynamically more stable than the stoichiometric schapbachite (α-AgBiS2).
KW - Electromotive force (EMF)
KW - Saturation
KW - Schapbachite
KW - Solid solubility
KW - Thermodynamic properties
UR - http://www.scopus.com/inward/record.url?scp=84889682012&partnerID=8YFLogxK
U2 - 10.1016/j.jct.2013.11.006
DO - 10.1016/j.jct.2013.11.006
M3 - Article
AN - SCOPUS:84889682012
SN - 0021-9614
VL - 70
SP - 219
EP - 226
JO - Journal of Chemical Thermodynamics
JF - Journal of Chemical Thermodynamics
ER -