Evaluating System Identification Methods for Predicting Thermal Dissipation of Heterogeneous SoCs

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

8 Lataukset (Pure)

Abstrakti

In this paper we evaluate the use of system identification methods to build a thermal prediction model of heterogeneous SoC platforms that can be used to quickly predict the temperature of difierent configurations without the need of hardware. Specifically, we focus on modeling approaches that can predict the temperature based on the clock frequency and the utilization percentage of each core.
We investigate three methods with respect to their prediction accuracy: a linear state-space identification approach using polynomial regressors, a NARX neural network approach and a recurrent neural network approach configured in an FIR model structure. We evaluate the methods on an Odroid-XU4 board featuring an Exynos 5422 SoC. The results show that the model based on polynomial regressors significantly outperformed the other two models when trained with 1 hour and 6 hours of data.
AlkuperäiskieliEnglanti
OtsikkoEmbedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2021.
KustantajaSpringer
Sivut144-160
Sivumäärä17
ISBN (painettu)978-3-031-04579-0
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
Tapahtuma21st International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2021 - Virtual, Online
Kesto: 4 heinäk. 20218 heinäk. 2021

Julkaisusarja

Nimi Lecture Notes in Computer Science
KustantajaSpringer
Vuosikerta13227
ISSN (painettu)0302-9743

Konferenssi

Konferenssi21st International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2021
KaupunkiVirtual, Online
Ajanjakso04/07/2108/07/21

Sormenjälki

Sukella tutkimusaiheisiin 'Evaluating System Identification Methods for Predicting Thermal Dissipation of Heterogeneous SoCs'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Viittausmuodot