ENHANCING THE UNDERSTANDING OF E-COMMERCE REVIEWS THROUGH ASPECT EXTRACTION TECHNIQUES: A BERT-BASED APPROACH

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

150 Lataukset (Pure)

Abstrakti

The growth of online customer reviews on e-commerce platforms has led to an overwhelming volume and variety of data, making manual analysis impractical for both consumers and managers. Consequently, machine learning techniques, such as Aspect-Based Sentiment Analysis (ABSA), have gained prominence for their ability to determine sentiment at the aspect level. This study aims to fine-tune natural language processing models for aspect extraction in e-commerce customer reviews. We manually annotated 2781 online user review sentences in English and employed different extensions of the BERT model to identify implicit and explicit aspects. This approach diverges from prior studies, as our dataset comprises real user reviews from five prominent e-commerce platforms. The findings demonstrate the models’ effectiveness in extracting aspects from diverse e-commerce user reviews, yielding a deeper understanding of user-generated content and customer satisfaction trends, and providing valuable insights for managerial decision-making. This study contributes to the ABSA literature and offers practical implications for e-commerce platforms aiming to improve their products and services based on customer feedback.
AlkuperäiskieliEnglanti
OtsikkoProceedings of 36th Bled eConference
AlaotsikkoDigital Economy and Society: The Balancing Act for Digital Innovation in Times of Instability
ISBN (elektroninen)978-961-286-751-5
DOI - pysyväislinkit
TilaJulkaistu - kesäk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
Tapahtuma36th Bled econfrence -
Kesto: 25 kesäk. 202328 elok. 2023
https://bledconference.org/

Konferenssi

Konferenssi36th Bled econfrence
Ajanjakso25/06/2328/08/23
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'ENHANCING THE UNDERSTANDING OF E-COMMERCE REVIEWS THROUGH ASPECT EXTRACTION TECHNIQUES: A BERT-BASED APPROACH'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Viittausmuodot