Data-driven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace—A review

Henrik Saxén, Chuanhou Gao, Zhiwei Gao

    Tutkimustuotos: LehtiartikkeliKatsausartikkeliTieteellinenvertaisarvioitu

    68 Sitaatiot (Scopus)

    Abstrakti

    A review of black-box models for short-term time-discrete prediction of the silicon content of hot metal produced in blast furnaces is presented. The review is primarily focused on work presented in journal papers, but still includes some early conference papers (published before 1990) which have a clear contribution to the field. Linear and nonlinear models are treated separately, and within each group a rough subdivision according to the model type is made. Within each subsection the models are treated (almost) chronologically, presenting the principle behind the modeling approach, the signals used and the main findings in terms of accuracy and usefulness. Finally, in the final section the approaches are discussed and some potential lines of future research are proposed. In an Appendix, a list of commonly used input and output variables in the models is presented.
    AlkuperäiskieliEi tiedossa
    Sivut2213–2225
    Sivumäärä13
    JulkaisuIEEE Transactions on Industrial Informatics
    Vuosikerta9
    Numero4
    DOI - pysyväislinkit
    TilaJulkaistu - 2013
    OKM-julkaisutyyppiA2 Arvio tiedejulkaisuussa (artikkeli)

    Keywords

    • blast furnace
    • dynamics
    • Hot metal silicon
    • prediction
    • time-series models

    Viittausmuodot