Data collection and utilization framework for edge AI applications

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

3 Sitaatiot (Scopus)
41 Lataukset (Pure)


As data being produced by IoT applications continues to explode, there is a growing need to bring computing power closer to the source of the data to meet the response-time, power dissipation and cost goals of performance-critical applications in various domains like Industrial Internet of Things (IIoT), Automated Driving, Medical Imaging or Surveillance among others. This paper proposes a data collection and utilization framework that allows runtime platform and application data to be sent to an edge and cloud system via data collection agents running close to the platform. Agents are connected to a cloud system able to train AI models to improve overall energy efficiency of an AI application executed on a edge platform. In the implementation part we show the benefits of FPGA-based platform for the task of object detection. Furthermore we show that it is feasible to collect relevant data from an FPGA platform, transmit the data to a cloud system for processing and receiving feedback actions to execute an edge AI application energy efficiently. As future work we foresee the possibility to train, deploy and continuously improve a base model able to efficiently adapt the execution of edge applications.

Otsikko2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for AI (WAIN)
ISBN (painettu)978-1-6654-4471-2
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE/ACM Workshop on AI Engineering - Software Engineering for AI -
Kesto: 30 toukok. 202131 toukok. 2021


KonferenssiIEEE/ACM Workshop on AI Engineering - Software Engineering for AI


Sukella tutkimusaiheisiin 'Data collection and utilization framework for edge AI applications'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.