Bayesian Statistics to Elucidate the Kinetics of γ-Valerolactone from n-Butyl Levulinate Hydrogenation over Ru/C

Sarah Capecci, Yanjun Wang, Jose Delgado, Valeria Casson Moreno, Mélanie Mignot, Henrik Grénman, Dmitry Yu Murzin, Sébastien Leveneur*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArtikkeliTieteellinenvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

The synthesis of γ-valerolactone (GVL), a platform molecule that can be produced from lignocellulosic biomass, was performed in this work by hydrogenation of an alkyl levulinate over Ru/C. Kinetic models reported in the literature are typically not compared with rival alternatives, even if a discrimination study is needed to find the optimum operating conditions. Different surface reaction kinetic models were thus considered in this work, specifically addressing hydrogenation of butyl levulinate to GVL, where the latter was used as a solvent to minimize potential solvent interference with the reaction, including its evaporation. The Bayesian approach was applied to evaluate the probability of each model. It was found that non-competitive Langmuir-Hinshelwood with no dissociation of the hydrogen model has the highest posterior probability.

AlkuperäiskieliEnglanti
Sivut11725-11736
Sivumäärä12
JulkaisuIndustrial and Engineering Chemistry Research
Vuosikerta60
Numero31
Varhainen verkossa julkaisun päivämäärä29 heinäkuuta 2021
DOI - pysyväislinkit
TilaJulkaistu - 11 elokuuta 2021
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Bayesian Statistics to Elucidate the Kinetics of γ-Valerolactone from <i>n</i>-Butyl Levulinate Hydrogenation over Ru/C'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Viittausmuodot