Bangla Compound Character Recognition using Support Vector Machine (SVM) on Advanced Feature Sets

Md Raisul Kibria, Afrin Ahmed, Zannatul Firdawsi, Mohammad Abu Yousuf

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

17 Sitaatiot (Scopus)

Abstrakti

A systematic approach for handwritten character detection and recognition using SVM has many significant applications. The proposed technique extracts features to classify the complex structural variations of Bangla compound characters. The three features used for classification are - Longest Run Feature (LRF) based on CG based Partitioning, Histogram of Oriented Gradients (HOG) Feature and Diagonal Feature. This enhanced, powerful combination of features result in a 180-length variable feature vector for each character, which is found to be adequate enough to uniquely represent and identify each character. Prior, Bangla handwritten character recognition problem has not been addressed with the proposed feature extraction techniques. The extracted feature vectors are used during the training phase for building a SVM classifier, testing phase for classifying characters which are then compared with their respective labels during evaluation. The results obtained show higher efficiency regarding classifier accuracy as compared to other existing approaches.
AlkuperäiskieliEnglanti
Otsikko2020 IEEE Region 10 Symposium (TENSYMP)
KustantajaIEEE
DOI - pysyväislinkit
TilaJulkaistu - 5 kesäk. 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa

Sormenjälki

Sukella tutkimusaiheisiin 'Bangla Compound Character Recognition using Support Vector Machine (SVM) on Advanced Feature Sets'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Viittausmuodot