Apprehensions and emerging solutions in ML-based protein structure prediction

Tutkimustuotos: LehtiartikkeliKatsausartikkelivertaisarvioitu

3 Sitaatiot (Scopus)
21 Lataukset (Pure)

Abstrakti

The three-dimensional structure of proteins determines their function in vital biological processes. Thus, when the structure is known, the molecular mechanism of protein function can be understood in more detail and obtained information utilized in biotechnological, diagnostics, and therapeutic applications. Over the past five years, machine learning (ML)-based modeling has pushed protein structure prediction to the next level with AlphaFold in the front line, predicting the structure for hundreds of millions of proteins. Further advances recently report promising ML-based approaches for solving remaining challenges by incorporating functionally important metals, co-factors, post-translational modifications, structural dynamics, and interdomain and multimer interactions in the structure prediction process.

AlkuperäiskieliEnglanti
Artikkeli102819
JulkaisuCurrent Opinion in Structural Biology
Vuosikerta86
DOI - pysyväislinkit
TilaJulkaistu - kesäk. 2024
OKM-julkaisutyyppiA2 Katsausartikkeli tiedejulkaisuussa (artikkeli)

Sormenjälki

Sukella tutkimusaiheisiin 'Apprehensions and emerging solutions in ML-based protein structure prediction'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Viittausmuodot