Analysis of Particle Size Distribution of Coke on Blast Furnace Belt Using Object Detection

Meng Li*, Xu Wang, Hao Yao, Henrik Saxén, Yaowei Yu

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArtikkeliTieteellinenvertaisarvioitu

11 Sitaatiot (Scopus)
141 Lataukset (Pure)

Abstrakti

Particle size distribution is an important parameter of metallurgical coke for use in blast furnaces. It is usually analyzed by traditional sieving methods, which cause delays and require maintenance. In this paper, a coke particle detection model was developed using a deep learning-based object detection algorithm (YOLOv3). The results were used to estimate the particle size distribution by a statistical method. Images of coke on the main conveyor belt of a blast furnace were acquired for model training and testing, and the particle size distribution determined by sieving was used for verification of the results. The experiment results show that the particle detection model is fast and has a high accuracy; the absolute error of the particle size distribution between the detection method and the sieving method was less than 5%. The detection method provides a new approach for fast analysis of particle size distributions from images and holds promise for a future online application in the plant.
AlkuperäiskieliEnglanti
Artikkeli1902
Sivumäärä15
JulkaisuProcesses
Vuosikerta10
Numero10
DOI - pysyväislinkit
TilaJulkaistu - 20 syysk. 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Analysis of Particle Size Distribution of Coke on Blast Furnace Belt Using Object Detection'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Viittausmuodot