Analysing blast furnace data using evolutionary neural network and multiobjective genetic algorithms

A. Agarwal, U. Tewary, F. Pettersson, S. Das, H. Saxén, N. Chakraborti*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArtikkeliTieteellinenvertaisarvioitu

33 Sitaatiot (Scopus)

Abstrakti

Approximately one year's operational data of a TATA Steel blast furnace were subjected to a multiobjective optimisation using genetic algorithms. Data driven models were constructed for productivity, CO2 content of the top gas and Si content of the hot metal, using an evolutionary neural network that itself evolved through a multiobjective genetic algorithm as a tradeoff between the accuracy of training and the network complexity. The final networks were selected using the corrected Akaike information criterion. Bi-objective optimisation studies were subsequently carried out between the productivity and CO2 content with various constraints at the Si level in the hot metal. The results indicate that a productivity increase would entail either a compromise of the CO2 fraction in the top gas or the Si content in the hot metal. The Pareto frontiers presented in this study provide the best possible parameter settings in such a scenario.

AlkuperäiskieliEnglanti
Sivut353-359
Sivumäärä7
JulkaisuIronmaking and Steelmaking
Vuosikerta37
Numero5
DOI - pysyväislinkit
TilaJulkaistu - 1 heinäkuuta 2010
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Analysing blast furnace data using evolutionary neural network and multiobjective genetic algorithms'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Viittausmuodot