ABOships - An Inshore and Offshore Maritime Vessel Detection Dataset with Precise Annotations

Bogdan Iancu*, Valentin Soloviev, Luca Zelioli, Johan Lilius

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArtikkeliTieteellinenvertaisarvioitu

17 Sitaatiot (Scopus)
150 Lataukset (Pure)

Abstrakti

Availability of domain-specific datasets is an essential problem in object detection. Datasets of inshore and offshore maritime vessels are no exception, with a limited number of studies addressing maritime vessel detection on such datasets. For that reason, we collected a dataset consisting of images of maritime vessels taking into account different factors: background variation, atmospheric conditions, illumination, visible proportion, occlusion and scale variation. Vessel instances (including nine types of vessels), seamarks and miscellaneous floaters were precisely annotated: we employed a first round of labelling and we subsequently used the CSRT tracker to trace inconsistencies and relabel inadequate label instances. Moreover, we evaluated the out-of-the-box performance of four prevalent object detection algorithms (Faster R-CNN, R-FCN, SSD and EfficientDet). The algorithms were previously trained on the Microsoft COCO dataset. We compared their accuracy based on feature extractor and object size. Our experiments showed that Faster R-CNN with Inception-Resnet v2 outperforms the other algorithms, except in the large object category where EfficientDet surpasses the latter.
AlkuperäiskieliEnglanti
Artikkeli988
Sivut1-17
Sivumäärä17
JulkaisuRemote Sensing
Vuosikerta13
Numero5
DOI - pysyväislinkit
TilaJulkaistu - 5 helmik. 2021
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'ABOships - An Inshore and Offshore Maritime Vessel Detection Dataset with Precise Annotations'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Viittausmuodot