Abstract
The cytoskeleton is a key feature of both prokaryotic and eukaryotic cells. Itis comprised of three protein families, one of which is the intermediate filaments (IFs). Of these, the IFs are the largest and most diverse. The IFs are expressed throughout life, and are involved in the regulation of cell differentiation, homeostasis, ageing and pathogenesis. The IFs not only provide structural integrity to the cell, they are also involved in a range of cellular functions from organelle trafficking and cell migration to signalling transduction. The IFs are highly dynamic proteins, able to respond and adapt their network rapidly in response to intra- and extra- cellular cues. Consequently they interact with a whole host of cellular signalling proteins, regulating function, and activity, and cellular localisation. While the function of some of the better-known IFs such as the keratins is well studied, the understanding of the function of two IFs, nestin and vimentin, is poor. Nestin is well known as a marker of differentiation and is expressed in some cancers. In cancer, nestin is primarily described as is a promoter of cell motility, however, how it fulfils this role remains undefined. Vimentin too is expressed in cancer, and is known to promote cell motility and is used as a marker for epithelial to mesenchymal transition (EMT). It is only in the last decade that studies have addressed the role that vimentin plays in cell motility and EMT. This work provides novel insight into how the IFs, nestin and vimentin regulate cell motility and invasion. In particular we show that nestin regulates the cellular localisation and organisation of two key facilitators of cell migration, focal adhesion kinase and integrins. We identify nestin as a regulator of extracellular matrix degradation and integrin-mediated cell invasion. Two further studies address the specific regulation of vimentin by phosphorylation. A detailed characterisation study identified key phosphorylation sites on vimentin, which are critical for proper organisation of the vimentin network. Furthermore, we show that the bioactive sphingolipids are vimentin network regulators. Specifically, the sphingolipids induced RhoA kinasedependent (ROCK) phosphorylation at vimentin S71, which lead to filament reorganisation and inhibition of cell migration. Together these studies shed new light into the regulation of nestin and vimentin during cell motility.
Original language | Undefined/Unknown |
---|---|
Publisher | |
Print ISBNs | 978-952-12-3049-3 |
Publication status | Published - 2014 |
MoE publication type | G5 Doctoral dissertation (article) |