Time-space-resolved origami hierarchical electronics for ultrasensitive detection of physical and chemical stimuli

M Zhang, JJ Sun, M Khatib, Lin Z-Y, Chen Z-H, W Saliba, A Gharra, YD Horev, V Kloper, Y Milyutin, Tan Phat Huynh, S Brandon, G Shi, H Haick

Research output: Contribution to journalArticleScientificpeer-review

58 Citations (Scopus)
50 Downloads (Pure)

Abstract

Recent years have witnessed thriving progress of flexible and portable electronics, with very high demand for cost-effective and tailor-made multifunctional devices. Here, we report on an ingenious origami hierarchical sensor array (OHSA) written with a conductive ink. Thanks to origami as a controllable hierarchical framework for loading ink material, we have demonstrated that OHSA possesses unique time-space-resolved, high-discriminative pattern recognition (TSR-HDPR) features, qualifying it as a smart sensing device for simultaneous sensing and distinguishing of complex physical and chemical stimuli, including temperature, relative humidity, light and volatile organic compounds (VOCs). Of special importance, OSHA has shown very high sensitivity in differentiating between structural isomers and chiral enantiomers of VOCs -opening a door for wide variety of unique opportunities in several length scales.
Original languageUndefined/Unknown
Pages (from-to)
Number of pages10
JournalNature Communications
Volume10
DOIs
Publication statusPublished - 2019
MoE publication typeA1 Journal article-refereed

Cite this