Three-dimensional models of alpha(2A)-adrenergic receptor complexes provide a structural explanation for ligand binding

Tiina Salminen, M Varis, T Nyrönen, M Pihlavisto, AM Hoffren, T Lönnberg, A Marjamäki, H Frang, JM Savola, M Scheinin, Mark S Johnson

Research output: Contribution to journalArticleScientificpeer-review

36 Citations (Scopus)

Abstract

We have compared bacteriorhodopsin-based (alpha(2A)-AR(BR)) and rhodopsin-based (alpha(2A)-AR(R)) models of the human alpha(2A)-adrenengic receptor (alpha(2A)-AR) using both docking simulations and experimental receptor alkylation studies with chloroethylclonidine and a-aminoethyl methanethiosulfonate hydrobromide. The results indicate that the alpha(2A)-AR(R) model provides a better explanation for ligand binding than does our alpha(2A)-AR(BR) model. Thus, we have made an extensive analysis of ligand binding to alpha(2A)-AR(R) and engineered mutant receptors using clonidine, para-aminoclonidine, oxymetazoline, 5-bromo-N-(4, 5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK14,304), and norepinephrine as ligands, The representative docked ligand conformation was chosen using extensive docking simulations coupled with the identification of favorable interaction sites for chemical groups in the receptor, These ligand-protein complex studies provide a rational explanation at the atomic level for the experimentally observed binding affinities of each of these ligands to the alpha(2A)-adrenergic receptor.
Original languageUndefined/Unknown
Pages (from-to)23405–23413
Number of pages9
JournalJournal of Biological Chemistry
Volume274
Issue number33
DOIs
Publication statusPublished - 1999
MoE publication typeA1 Journal article-refereed

Cite this