The role of mafic dykes in the petrogenesis of the Archean Siilinjärvi carbonatite complex, east-central Finland

HB Mattsson, Karin Högdahl, M Carlsson, A Malehmir

    Research output: Contribution to journalArticleScientificpeer-review

    7 Citations (Scopus)


    The Archean (similar to 2.6 Ga) Siilinjarvi carbonatite complex in east-central Finland is crosscut by a few ultramafic lamprophyre dykes, together with a broad array of more evolved mafic dykes that range in composition from foidites to various types of alkali basalts. A possible genetic link between the primitive lamprophyres and the carbonatite complex has previously been hypothesised, but their exact relations have been unclear due to the regional metamorphic overprint (i.e., greenschist facies). Here we focus on the petrology and petrography of the mafic dykes, and integrate the data to present a coherent model that can explain the genesis of the Siilinjarvi carbonatite complex. Field-relations, in combination with petrography and geochemistry, indicate that there are at least three generations of mafic dykes present. The oldest dykes (Generation I) are strongly deformed, and inferred to have been emplaced shortly after the formation of the complex itself. These dykes can be divided into two groups (i.e., ultramafic lamprophyres and Group A), where Group A comprises foidites characterised by low SiO2 (41.4-51.5 wt%) and high alkali (>10 wt% K2O) content. We interpret the foiditic magmas to have evolved from primitive ultramafic lamprophyres by fractionating a clinopyroxene-olivine dominated mineral assemblage that was devoid of feldspar. This fractionation path forced alkali-enrichment in the magmas belonging to Group A, which pushed them into the miscibility gap, and resulted in liquid immiscibility that produced moderately alkaline conjugate carbonatite(s). Subsequent fractionation of the conjugate carbonatite by predominantly calcite and apatite produced the mineralogically homogeneous carbonatite cumulate that is exposed at Siilinjarvi. Younger, less deformed, mafic dykes (belonging to Generations II and III) exhibit trace element characteristics, broadly similar to basaltic dyke swarms in the region. The younger dykes are characterised by the presence of large plagioclase crystals in thin sections. Crystallisation of a feldspar-bearing mineral assemblage resulted in only moderate enrichment of alkalis with increased fractionation, which caused the younger dykes to evolve along the more common basalt-to-trachyte series. Thus, the magmas belonging to Generations II and III at Siilinjarvi never fulfilled the conditions required to produce carbonatites by liquid immiscibility.
    Original languageUndefined/Unknown
    Pages (from-to)468–479
    Number of pages12
    Publication statusPublished - 2019
    MoE publication typeA1 Journal article-refereed


    • Siilinjarvi
    • Carbonatite
    • Ultramafic lamprohyre
    • Archean
    • Fractional crystallisation
    • Liquid immiscibility

    Cite this