TY - JOUR
T1 - The psychoactive pollutant fluoxetine compromises antipredator behaviour in fish
AU - [Unknown], Jake M.Martin
AU - Saaristo, Minna
AU - [Unknown], Michael G.Bertram
AU - [Unknown], Phoebe J.Lewis
AU - [Unknown], Timothy L.Coggan
AU - [Unknown], Bradley O.Clarke
AU - [Unknown], Bob B.M.Wong
PY - 2017
Y1 - 2017
N2 - Pharmaceuticals are increasingly being detected in aquatic ecosystems worldwide. Particularly concerning are pharmaceutical pollutants that can adversely impact exposed wildlife, even at extremely low concentrations. One such contaminant is the widely prescribed antidepressant fluoxetine, which can disrupt neurotransmission and behavioural pathways in wildlife. Despite this, relatively limited research has addressed the behavioural impacts of fluoxetine at ecologically realistic exposure concentrations. Here, we show that 28-day fluoxetine exposure at two ecologically relevant dosages—one representing low surface water concentrations and another representing high effluent flow concentrations—alters antipredator behaviour in Eastern mosquitofish (Gambusia holbrooki). We found that fluoxetine exposure at the lower dosage resulted in increased activity levels irrespective of the presence or absence of a predatory dragonfly nymph (Hemianax papuensis). Additionally, irrespective of exposure concentration, fluoxetine-exposed fish entered the predator ‘strike zone’ more rapidly. In a separate experiment, fluoxetine exposure reduced mosquitofish freezing behaviour—a common antipredator strategy—following a simulated predator strike, although, in females, this reduction in behaviour was seen only at the lower dosage. Together, our findings suggest that fluoxetine can cause both non-monotonic and sex-dependent shifts in behaviour. Further, they demonstrate that exposure to fluoxetine at environmentally realistic concentrations can alter antipredator behaviour, with important repercussions for organismal fitness.
AB - Pharmaceuticals are increasingly being detected in aquatic ecosystems worldwide. Particularly concerning are pharmaceutical pollutants that can adversely impact exposed wildlife, even at extremely low concentrations. One such contaminant is the widely prescribed antidepressant fluoxetine, which can disrupt neurotransmission and behavioural pathways in wildlife. Despite this, relatively limited research has addressed the behavioural impacts of fluoxetine at ecologically realistic exposure concentrations. Here, we show that 28-day fluoxetine exposure at two ecologically relevant dosages—one representing low surface water concentrations and another representing high effluent flow concentrations—alters antipredator behaviour in Eastern mosquitofish (Gambusia holbrooki). We found that fluoxetine exposure at the lower dosage resulted in increased activity levels irrespective of the presence or absence of a predatory dragonfly nymph (Hemianax papuensis). Additionally, irrespective of exposure concentration, fluoxetine-exposed fish entered the predator ‘strike zone’ more rapidly. In a separate experiment, fluoxetine exposure reduced mosquitofish freezing behaviour—a common antipredator strategy—following a simulated predator strike, although, in females, this reduction in behaviour was seen only at the lower dosage. Together, our findings suggest that fluoxetine can cause both non-monotonic and sex-dependent shifts in behaviour. Further, they demonstrate that exposure to fluoxetine at environmentally realistic concentrations can alter antipredator behaviour, with important repercussions for organismal fitness.
M3 - Artikel
SN - 0269-7491
VL - 222
SP - 592
EP - 599
JO - Environmental Pollution
JF - Environmental Pollution
ER -