Structural Basis for the Functional Changes by EGFR Exon 20 Insertion Mutations

Mahlet Z. Tamirat, Kari J. Kurppa, Klaus Elenius, Mark S Johnson

Research output: Contribution to journalArticleScientificpeer-review

14 Citations (Scopus)

Abstract

Activating somatic mutations of the epidermal growth factor receptor (EGFR) are frequently implicated in non-small cell lung cancer (NSCLC). While L858R and exon 19 deletion mutations are most prevalent, exon 20 insertions are often observed in NSCLC. Here, we investigated the structural implications of two common EGFR exon 20 insertions in NSCLC, V769insASV and D770insNPG. The active and inactive conformations of wild-type, D770insNPG and V769insASV EGFRs were probed with molecular dynamics simulations to identify local and global alterations that the mutations exert on the EGFR kinase domain, highlighting mechanisms for increased enzymatic activity. In the active conformation, the mutations increase interactions that stabilize the αC helix that is essential for EGFR activity. Moreover, the key Lys745–Glu762 salt bridge was more conserved in the insertion mutations. The mutants also preserved the state of the structurally critical aspartate–phenylalanine–glycine (DFG)-motif and regulatory spine (R-spine), which were altered in wild-type EGFR. The insertions altered the structure near the ATP-binding pocket, e.g., the P-loop, which may be a factor for the clinically observed tyrosine kinase inhibitor (TKI) insensitivity by the insertion mutants. The inactive state simulations also showed that the insertions disrupt the Ala767–Arg776 interaction that is key for maintaining the “αC-out” inactive conformation, which could consequently fuel the transition from the inactive towards the active EGFR state.
Original languageEnglish
JournalCancers
Volume13
Issue number5
DOIs
Publication statusPublished - 5 Mar 2021
MoE publication typeA1 Journal article-refereed

Keywords

  • InFlames

Fingerprint

Dive into the research topics of 'Structural Basis for the Functional Changes by EGFR Exon 20 Insertion Mutations'. Together they form a unique fingerprint.

Cite this