TY - JOUR
T1 - Somatic genetic drift and multilevel selection in a clonal seagrass
AU - Yu, Lei
AU - Boström, Christoffer
AU - Franzenburg, Sören
AU - Bayer, Till
AU - Dagan, Tal
AU - Reusch, Thorsten B.H.
N1 - Funding Information:
This study was supported by a four-year PhD scholarship from the China Scholarship Council to L.Y. and by a fellowship from the Åbo Akademi University Foundation to C.B. We thank J. L. Olsen and B. Werner for helpful comments on earlier versions of the manuscript and in particular I. Baums for discussing methods for sequencing-independent SNP verification via restriction enzyme digestion. We thank the Archipelago Centre Korpoström (Finland) for excellent working facilities, K. Gagnon for field assistance and S. Landis for creating some of the illustrations. Sampling permit no. MH 5448/2015 was granted through Parks and Wildlife Finland (Metsähallitus).
Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - All multicellular organisms are genetic mosaics owing to somatic mutations. The accumulation of somatic genetic variation in clonal species undergoing asexual (or clonal) reproduction may lead to phenotypic heterogeneity among autonomous modules (termed ramets). However, the abundance and dynamics of somatic genetic variation under clonal reproduction remain poorly understood. Here we show that branching events in a seagrass (Zostera marina) clone or genet lead to population bottlenecks of tissue that result in the evolution of genetically differentiated ramets in a process of somatic genetic drift. By studying inter-ramet somatic genetic variation, we uncovered thousands of single nucleotide polymorphisms that segregated among ramets. Ultra-deep resequencing of single ramets revealed that the strength of purifying selection on mosaic genetic variation was greater within than among ramets. Our study provides evidence for multiple levels of selection during the evolution of seagrass genets. Somatic genetic drift during clonal propagation leads to the emergence of genetically unique modules that constitute an elementary level of selection and individuality in long-lived clonal species.
AB - All multicellular organisms are genetic mosaics owing to somatic mutations. The accumulation of somatic genetic variation in clonal species undergoing asexual (or clonal) reproduction may lead to phenotypic heterogeneity among autonomous modules (termed ramets). However, the abundance and dynamics of somatic genetic variation under clonal reproduction remain poorly understood. Here we show that branching events in a seagrass (Zostera marina) clone or genet lead to population bottlenecks of tissue that result in the evolution of genetically differentiated ramets in a process of somatic genetic drift. By studying inter-ramet somatic genetic variation, we uncovered thousands of single nucleotide polymorphisms that segregated among ramets. Ultra-deep resequencing of single ramets revealed that the strength of purifying selection on mosaic genetic variation was greater within than among ramets. Our study provides evidence for multiple levels of selection during the evolution of seagrass genets. Somatic genetic drift during clonal propagation leads to the emergence of genetically unique modules that constitute an elementary level of selection and individuality in long-lived clonal species.
UR - http://www.scopus.com/inward/record.url?scp=85084475821&partnerID=8YFLogxK
U2 - 10.1038/s41559-020-1196-4
DO - 10.1038/s41559-020-1196-4
M3 - Article
C2 - 32393866
AN - SCOPUS:85084475821
SN - 2397-334X
VL - 4
SP - 952
EP - 962
JO - Nature Ecology and Evolution
JF - Nature Ecology and Evolution
IS - 7
ER -