Abstract
Simple epithelial keratins (SEKs) are the cytoplasmic intermediate filament proteins of single-layered and glandular epithelial cells as found in the liver, pancreas, intestine, and lung. SEKs have broad cytoprotective functions, which are facilitated by dynamic posttranslational modifications and interaction with associated proteins. SEK filaments are composed of obligate heteropolymers of type II (K7, K8) and type I (K18–K20, K23) keratins. The multifaceted roles of SEKs are increasingly appreciated due to findings obtained from transgenic mouse models and human studies that identified SEK variants in several digestive diseases. Reorganization of the SEK network into aggregates called Mallory–Denk bodies (MDBs) is characteristic for specific liver disorders such as alcoholic and nonalcoholic steatohepatitis. To spur further research on SEKs, we here review the methods and potential caveats of their isolation as well as possibilities to study them in cell culture. The existing transgenic SEK mouse models, their advantages and potential drawbacks are discussed. The tools to induce MDBs, ways of their visualization and quantification, as well as the possibilities to detect SEK variants in humans are summarized.
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | 351–388 |
Journal | Methods in Enzymology |
Issue number | 568 |
DOIs | |
Publication status | Published - 2016 |
MoE publication type | A2 Review article in a scientific journal |