TY - JOUR
T1 - Reversible mutations in gliding motility and virulence genes
T2 - A flexible and efficient phage defence mechanism in Flavobacterium psychrophilum
AU - Jørgensen, Jóhanna
AU - Sundell, Krister
AU - Castillo, Daniel
AU - Dramshøj, Liv S.
AU - Jørgensen, Natasja B.
AU - Madsen, Susie B.
AU - Landor, Lotta
AU - Wiklund, Tom
AU - Donati, Valentina L.
AU - Madsen, Lone
AU - Dalsgaard, Inger
AU - Middelboe, Mathias
N1 - Funding Information:
This research resulted from the BONUS FLAVOPHAGE project supported by BONUS (Art 185), funded jointly by the EU and Innovation Fund Denmark and the Academy of Finland. We thank Ville Hoikkala for help with wild‐type genome assembly.
Publisher Copyright:
© 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
PY - 2022/10
Y1 - 2022/10
N2 - Flavobacteria are among the most important pathogens in freshwater salmonid aquaculture worldwide. Due to concerns regarding development of antibiotic resistance, phage therapy has been proposed as a solution to decrease pathogen load. However, application of phages is challenged by the development of phage resistance, and knowledge of the mechanisms and implications of phage resistance is therefore required. To study this, 27 phage-resistant isolates of F. psychrophilum were genome sequenced and characterized to identify genetic modifications and evaluate changes in phenotypic traits, including virulence against rainbow trout. Phage-resistant isolates showed reduction or loss of gliding motility, proteolytic activity, and adhesion to surfaces, and most isolates were completely non-virulent against rainbow trout fry. Genomic analysis revealed that most phage-resistant isolates had mutations in genes associated with gliding motility and virulence. Reversal of these mutations in a sub-set of isolates led to regained motility, proteolytic activity, virulence and phage susceptibility. Although costly, the fast generation of phage resistance driven by single, reversible mutations likely represents a flexible and efficient phage defence mechanism in F. psychrophilum. The results further suggest that phage administration in aquaculture systems to prevent F. psychrophilum outbreaks selects for non-virulent phage-resistant phenotypes.
AB - Flavobacteria are among the most important pathogens in freshwater salmonid aquaculture worldwide. Due to concerns regarding development of antibiotic resistance, phage therapy has been proposed as a solution to decrease pathogen load. However, application of phages is challenged by the development of phage resistance, and knowledge of the mechanisms and implications of phage resistance is therefore required. To study this, 27 phage-resistant isolates of F. psychrophilum were genome sequenced and characterized to identify genetic modifications and evaluate changes in phenotypic traits, including virulence against rainbow trout. Phage-resistant isolates showed reduction or loss of gliding motility, proteolytic activity, and adhesion to surfaces, and most isolates were completely non-virulent against rainbow trout fry. Genomic analysis revealed that most phage-resistant isolates had mutations in genes associated with gliding motility and virulence. Reversal of these mutations in a sub-set of isolates led to regained motility, proteolytic activity, virulence and phage susceptibility. Although costly, the fast generation of phage resistance driven by single, reversible mutations likely represents a flexible and efficient phage defence mechanism in F. psychrophilum. The results further suggest that phage administration in aquaculture systems to prevent F. psychrophilum outbreaks selects for non-virulent phage-resistant phenotypes.
UR - http://www.scopus.com/inward/record.url?scp=85137325202&partnerID=8YFLogxK
U2 - 10.1111/1462-2920.16126
DO - 10.1111/1462-2920.16126
M3 - Article
C2 - 35837851
AN - SCOPUS:85137325202
SN - 1462-2912
VL - 24
SP - 4915
EP - 4930
JO - Environmental Microbiology
JF - Environmental Microbiology
IS - 10
ER -