Responses at various levels of ecological hierarchy indicate acclimation to sequential sublethal heatwaves in a temperate benthic ecosystem

Maysa Ito*, Tamar Guy-Haim, Yvonne Sawall, Markus Franz, Björn Buchholz, Thomas Hansen, Philipp Neitzel, Christian Pansch, Tobias Steinhoff, Martin Wahl, Florian Weinberger, Marco Scotti

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)

Abstract

Marine heatwaves have caused massive mortality in coastal benthic ecosystems, altering community composition. Here, we aim to understand the effects of single and sequential sublethal heatwaves in a temperate benthic ecosystem, investigating their disturbance on various levels of ecological hierarchy, i.e. individual physiology, trophic groups' biomass and ecosystem carbon fluxes. To do so, we performed a near-natural experiment using outdoor benthic mesocosms along spring/summer, where communities were exposed to different thermal regimes: without heatwaves (0HW), with one heatwave (1HW) and with three heatwaves (3HWs). Gastropods were negatively impacted by one single heatwave treatment, but the exposure to three sequential heatwaves caused no response, indicating ecological stress memory. The magnitude of ecosystem carbon fluxes mostly decreased after 1HW, with a marked negative impact on mesograzers' feeding, while the overall intensity of carbon fluxes increased after 3HWs. Consumers' acclimation after the exposure to sequential heatwaves increased grazing activity, representing a threat for the macroalgae biomass. The evaluation of physiological responses and ecological interactions is crucial to interpret variations in community composition and to detect early signs of stress. Our results reveal the spread of heatwave effects along the ecological hierarchical levels, helping to predict the trajectories of ecosystem development. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.

Original languageEnglish
Article number20230171
JournalPhilosophical Transactions of the Royal Society B: Biological Sciences
Volume379
Issue number1909
DOIs
Publication statusPublished - 22 Jul 2024
MoE publication typeA1 Journal article-refereed

Keywords

  • Baltic Sea
  • carbon fluxes
  • ecological stress memory
  • mesograzers
  • ocean warming
  • trophic networks

Fingerprint

Dive into the research topics of 'Responses at various levels of ecological hierarchy indicate acclimation to sequential sublethal heatwaves in a temperate benthic ecosystem'. Together they form a unique fingerprint.

Cite this