Process simulation of utilization of Co2 and steelmaking slags to form precipitated calcium carbonate (PCC)

Arshe Said, Sanni Eloneva, Carl Johan Fogelholm, Hannu Petteri Mattila, Ron Zevenhoven

Research output: Contribution to conferencePaper (not published)peer-review

7 Citations (Scopus)

Abstract

The increasing atmospheric carbon dioxide concentration has lead to concerns about global warming. One of the options that can contribute to the reduction of carbon dioxide emissions is the so-called CO2 sequestration by mineral carbonation. Steel manufacturing which is one of the biggest industrial sources of CO2 emissions could benefit from this option by utilizing its own by products, steelmaking slags to combine with CO2. Additional benefit would be achieved if the end-product is a pure and marketable calcium carbonate. The objective of this study is to evaluate the feasiblity of the method we have recently invented: producing pure calcium carbonate from steel converter slag and to compare it to the other promising methods found in the literature. Aspen Plus simulation software was used to simulate the process. In the simulations a solid feedstock from steelmaking slag is mixed with a ammonium acetate and water to selectively extract calcium from the slag. The resulting solid-aqueous solution is pumped to a carbonation reactor where it reacts with injected CO2 gas forming precipitated calcium carbonate CaCO3 as a final product. If the used solvent is not recycled, 5.00 kg of steel converter slag and 7.75 kg of ammonium acetate would be needed in order to fix 1 kg of CO2 according to model. Solvent recycling results with slight increase in slag consumption, but it is needed in order to minimize ammonium salt consumption. Heat required by the extraction reactor was found to be the most significant energy cost, but it could possibly be covered by the heat released from the carbonation reactor. Solvent recycling experiments were made using ammonium acetate, ammonium nitrate and ammonium chloride as solvents. Both calcium extraction efficiency and carbonation efficiency were somewhat smaller when recycled solvents were used. This seemed to be result of lost ammonia vapor. However, as long as electricity requirements of the separators, mixers, and ammonium recovery can be held below ~200 kWh/t CO2 fixed, the invented method using ammonium salt as solvent should be competitive with other carbonation methods proposed.

Original languageEnglish
Pages1261-1270
Number of pages10
Publication statusPublished - 2009
MoE publication typeO2 Other
Event22nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2009 - Foz du Iguacu, Parana, Brazil
Duration: 30 Aug 20093 Sep 2009

Conference

Conference22nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2009
Country/TerritoryBrazil
CityFoz du Iguacu, Parana
Period30/08/0903/09/09

Keywords

  • Ammonium salts
  • Aspen plus
  • Calcium carbonate
  • CO
  • Steelmaking slags

Fingerprint

Dive into the research topics of 'Process simulation of utilization of Co<sub>2</sub> and steelmaking slags to form precipitated calcium carbonate (PCC)'. Together they form a unique fingerprint.

Cite this