Probing the Lipid-Protein Interface Using Model Transmembrane Peptides with a Covalently Linked Acyl Chain

Thomas Nyholm, Bianca van Duyl, Dirk T. S. Rijkers, Rob M. J. Liskamp, J. Antoinette Killian

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)

Abstract

The aim of this study was to gain insight into how interactions between proteins and lipids in membranes are sensed at the protein-lipid interface. As a probe to analyze this interface, we used deuterium-labeled acyl chains that were covalently linked to a model transmembrane peptide. First, a perdeuterated palmitoyl chain was coupled to the Trp-flanked peptide WALP23 (Ac-CGWW(LA)(8)LWWA-NH(2)), and the deuterium NMR spectrum was analyzed in di-C18:1-phosphatidylcholine (PC) bilayers. We found that the chain order of this peptide-linked chain is rather similar to that of a noncovalently coupled perdeuterated palmitoyl chain, except that it exhibits a slightly lower order. Similar results were obtained when site-specific deuterium labels were used and when the palmitoyl chain was attached to the more-hydrophobic model peptide WLP23 (Ac-CGWWL(17)WWA-NH(2)) or to the Lys-flanked peptide KALP23 (Ac-CGKK(LA)(8)LKKA-NH(2)). The experiments showed that the order of both the peptide-linked chains and the noncovalently coupled palmitoyl chains in the phospholipid bilayer increases in the order KALP23 < WALP23 < WLP23. Furthermore, changes in the bulk lipid bilayer thickness caused by varying the lipid composition from di-C14:1-PC to di-C18:1-PC or by including cholesterol were sensed rather similarly by the covalently coupled chain and the noncovalently coupled palmitoyl chains. The results indicate that the properties of lipids adjacent to transmembrane peptides mostly reflect the properties of the surrounding lipid bilayer, and hence that (at least for the single-span model peptides used in this study) annular lipids do not play a highly specific role in protein-lipid interactions.
Original languageUndefined/Unknown
Pages (from-to)1959–1967
JournalBiophysical Journal
Volume101
Issue number8
DOIs
Publication statusPublished - 2011
MoE publication typeA1 Journal article-refereed

Cite this