Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis

D Halter, S Neumann, van Dijk SM, J Wolthoorn, De Maziere AM, OV Vieira, Peter Mattjus, J Klumperman, van Meer G, H Sprong

    Research output: Contribution to journalArticleScientificpeer-review

    239 Citations (Scopus)


    Glycosphingolipids are controlled by the spatial organization of their metabolism and by trans port specificity. Using immunoelectron microscopy, we localize to the Golgi stack the glycosyltransferases that produce glucosylceramide (GlcCer), lactosylceramide (LacCer), and GM3. GlcCer is synthesized on the cytosolic side and must translocate across to the Golgi lumen for LacCer synthesis. However, only very little natural GlcCer translocates across the Golgi in vitro. As GlcCer reaches the cell surface when Golgi vesicular trafficking is inhibited, it must translocate across a post-Golgi membrane. Concanamycin, a vacuolar proton pump inhibitor, blocks translocation independently of multidrug transporters that are known to translocate short-chain GlcCer. Concanamycin did not reduce LacCer and GM3 synthesis. Thus, GlcCer destined for glycolipid synthesis follows a different pathway and transports back into the endoplasmic reticulum (ER) via the late Golgi protein FAPP2. FAPP2 knockdown strongly reduces GM3 synthesis. Overall, we show that newly synthesized GlcCer enters two pathways: one toward the noncytosolic surface of a post-Golgi membrane and one via the ER toward the Golgi lumen LacCer synthase.
    Original languageUndefined/Unknown
    Pages (from-to)101–115
    Number of pages115
    JournalJournal of Cell Biology
    Issue number1
    Publication statusPublished - 2007
    MoE publication typeA1 Journal article-refereed

    Cite this