Optimising the regional mix of intermittent and flexible energy technologies

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)
8 Downloads (Pure)


Renewable energy sources could potentially satisfy a much larger part of the energy demand of human societies. When it comes to wind and solar energy, a key technological difficulty is the intermittent nature of these sources of energy. In order to ensure that energy is available at times when it is needed, these renewable energy technologies need to be backed up by storage systems and other more flexible energy systems such as gas engines. This paper presents a multi-period mixed-integer linear programming optimisation model of an energy system featuring multiple alternatives for satisfying variable demands of electricity and heat. The model is used to investigate how the intermittent renewable energy sources could work together with storage technologies, heat pumps, and flexible gas engines in a resource-efficient manner. Case studies are presented to illustrate how suitable technologies could be selected and operated in a region with high seasonal differences in the demands of heat and electricity. The case study suggests that heat pumps could play an important part in optimising the usage rate of wind power.

Original languageUndefined/Unknown
Pages (from-to)508–517
JournalJournal of Cleaner Production
Publication statusPublished - 2019
MoE publication typeA1 Journal article-refereed


  • Energy system modelling
  • Mixed integer linear programming
  • energy storage
  • Distributed energy systems
  • Renewable energy

Cite this