Abstract
As the world strives toward its net-zero targets, innovative solutions are required to reduce carbon emissions across all industrial sectors. One approach that can reduce emissions from food production is agrivoltaics—photovoltaic devices that enable the dual-use of land for both agricultural and electrical power-generating purposes. Optimizing agrivoltaics presents a complex systems-level challenge requiring a balance between maximizing crop yields and on-site power generation. This balance necessitates careful consideration of optics (light absorption, reflection, and transmission), thermodynamics, and the efficiency at which light is converted into electricity. Herein, real-world solar insolation and temperature data are used in combination with a comprehensive device-level model to determine the annual power generation of agrivoltaics based on different photovoltaic material choices. It is found that organic semiconductor-based photovoltaics integrated as semitransparent elements of protected cropping environments (advanced greenhouses) have comparable performance to state-of-the-art, inorganic semiconductor-based photovoltaics like silicon. The results provide a solid technical basis for building full, systems-level, technoeconomic models that account for crop and location requirements, starting from the undeniable standpoint of thermodynamics and electro-optical physics.
Original language | English |
---|---|
Article number | 2400456 |
Journal | Solar Rrl |
Volume | 8 |
Issue number | 18 |
DOIs | |
Publication status | Published - Sept 2024 |
MoE publication type | A1 Journal article-refereed |