Abstract
Two series of well-defined lignin fractions derived from birch and spruce alkaline lignin (AL) by sequential solvent fractionation (i-PrOH-EtOH-MeOH) were engaged in a structure-property-application relationship study. The bacterial-derived alkaliphilic laccase (MetZyme) extensively catalyzed the oxidation and polymerization of AL fractions in an aqueous alkaline solution (pH 10). Lignin fractions with low molar mass reached a higher polymerization degree due to more phenolic-OH groups serving as reactive sites of oxidation and better lignin-laccase accessibility arose from a lower lignin condensation degree than the high molar mass ones. In comparison, AL fractions from spruce were found to be less reactive toward the laccase-catalyzed polymerization than those from birch, which was attributed to the much pronounced aryl-vinyl moieties’ oxidation. Furthermore,in situpolymerization of birch AL fractions using microfibrillated cellulose as a structural template was conducted in an aqueous medium and a dispersion of nanocellulose with its fiber network evenly coated by aligned lignin nanoparticles was obtained. The present study not only provides fundamental insights on the laccase-assisted oxidation and polymerization of lignin but also presents a new perspective for valorizing lignin in biobased fiber products through green processing of solvent fractionation and enzymatic treatment.
Original language | English |
---|---|
Pages (from-to) | 8770-8782 |
Number of pages | 13 |
Journal | ACS Sustainable Chemistry and Engineering |
Volume | 9 |
Issue number | 26 |
DOIs | |
Publication status | Published - Jun 2021 |
MoE publication type | A1 Journal article-refereed |
Keywords
- alkaliphilic laccase
- biomass
- green chemistry
- lignin polymerization
- lignocellulosic nanocomposites