New ISE-Based Apparatus for Na+, K+, Cl-, pH and Transepithelial Potential Difference Real-Time Simultaneous Measurements of Ion Transport across Epithelial Cells Monolayer-Advantages and Pitfalls

M Zajac, Andrzej Lewenstam, M Stobiecka, K Dolowy

    Research output: Contribution to journalArticleScientificpeer-review

    12 Citations (Scopus)


    Cystic Fibrosis (CF) is the most common fatal human genetic disease, which is caused by a defect in an anion channel protein (CFTR) that affects ion and water transport across the epithelium. We devised an apparatus to enable the measurement of concentration changes of sodium, potassium, chloride, pH, and transepithelial potential difference by means of ion-selective electrodes that were placed on both sides of a 16HBE14 sigma human bronchial epithelial cell line that was grown on a porous support. Using flat miniaturized ISE electrodes allows for reducing the medium volume adjacent to cells to approximately 20 L and detecting changes in ion concentrations that are caused by transport through the cell layer. In contrast to classic electrochemical measurements, in our experiments neither the calibration of electrodes nor the interpretation of results is simple. The calibration solutions might affect cell physiology, the medium composition might change the direction of actions of the membrane channels and transporters, and water flow that might trigger or cut off the transport pathways accompanies the transport of ions. We found that there is an electroneutral transport of sodium chloride in both directions of the cell monolayer in the isosmotic transepithelial concentration gradient of sodium or chloride ions. The ions and water are transported as an isosmotic solution of 145 mM of NaCl.
    Original languageUndefined/Unknown
    Pages (from-to)
    Number of pages13
    Issue number8
    Publication statusPublished - 2019
    MoE publication typeA1 Journal article-refereed


    • epithelium
    • Cystic fibrosis

    Cite this