Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces

Hannu Teisala, Mikko Tuominen, Mikko Aromaa, Milena Stepien, Jyrki M. Mäkelä, Jarkko Saarinen, Martti Toivakka, Jurkka Kuusipalo

    Research output: Contribution to journalArticleScientificpeer-review

    107 Citations (Scopus)


    Hierarchical roughness is known to effectively reduce the liquid-solid contact area and water droplet adhesion on superhydrophobic surfaces, which can be seen for example in the combination of submicrometer and micrometer scale structures on the lotus leaf. The submicrometer scale fine structures, which are often referred to as nanostructures in the literature, have an important role in the phenomenon of superhydrophobicity and low water droplet adhesion. Although the fine structures are generally termed as nanostructures, their actual dimensions are often at the submicrometer scale of hundreds of nanometers. Here we demonstrate that small nanometric structures can have very different effect on surface wetting compared to the large submicrometer scale structures. Hierarchically rough superhydrophobic TiO2 nanoparticle surfaces generated by the liquid flame spray (LFS) on board and paper substrates revealed that the nanoscale surface structures have the opposite effect on the droplet adhesion compared to the larger submicrometer and micrometer scale structures. Variation in the hierarchical structure of the nanoparticle surfaces contributed to varying droplet adhesion between the high- and low-adhesive superhydrophobic states. Nanoscale structures did not contribute to superhydrophobicity, and there was no evidence of the formation of the liquid solid air composite interface around the nanostructures. Therefore, larger submicrometer and micrometer scale structures were needed to decrease the liquid solid contact area and to cause the superhydrophobicity. Our study suggests that a drastic wetting transition occurs on superhydrophobic surfaces at the nanometre scale; i.e., the transition between the Cassie-Baxter and Wenzel wetting states will occur as the liquid solid air composite interface collapses around nanoscale structures. Consequently, water adheres tightly to the surface by penetrating into the nanostructure. The droplet adhesion mechanism presented in this paper gives valuable insight into a phenomenon of simultaneous superhydrophobicity and high water droplet adhesion and contributes to a more detailed comprehension of superhydrophobicity overall.
    Original languageUndefined/Unknown
    Pages (from-to)3138–3145
    Number of pages8
    Issue number6
    Publication statusPublished - 2012
    MoE publication typeA1 Journal article-refereed

    Cite this