Abstract
Abstract In a healthcare setting, biofilms are a major source of infection and difficult to eradicate once formed. Nanoparticles (NPs) can be designed to effectively penetrate biofilms to more efficiently either deliver antibiotic drugs throughout the biofilm matrix or elicit inherent antibiofilm activity. Antibacterial cerium oxide (CeO2) NPs were employed as core material and coated with a mesoporous silica shell (MSN) to generate cerium oxide coated mesoporous silica NPs (CeO2@MSN). Detailed studies of NP-biofilm interactions are required to rationally develop NP platforms to prevent biofilm-related infections. This work developed and implemented a unique label-free analysis platform for the real-time monitoring of bacterial biofilm formation and then assessed the interactions of antibacterial NPs. An analysis platform which allows bacterial biofilms to grow and develop in situ in flow within the multi-parametric surface plasmon resonance (MP-SPR) instrument was established. This enabled simultaneous monitoring and detection of biofilm growth phases, structure, and interactions between differentially charged CeO2@MSNs and bacterial biofilms. Positively charged antibacterial NPs (polyethyleneimine functionalized CeO2@MSNs) were found to be the most efficient to penetrate the biofilm. The MP-SPR analysis platform was shown to be a powerful tool for monitoring biofilm development in real-time and to analyze biofilm properties and NP-biofilm interactions.
Original language | English |
---|---|
Article number | e20230012 |
Number of pages | 16 |
Journal | Smart Medicine |
Volume | 2 |
Issue number | 3 |
DOIs | |
Publication status | Published - Aug 2023 |
MoE publication type | A1 Journal article-refereed |
Keywords
- antibacterial
- biofilm
- cerium oxide (CeO2)
- mesoporous silica
- multi-parametric surface plasmon resonance (MP-SPR)
- nanoparticle-biofilm interactions
- nanoparticles
Fingerprint
Dive into the research topics of 'Monitoring silica core@shell nanoparticle-bacterial film interactions using the multi-parametric surface plasmon resonance technique'. Together they form a unique fingerprint.Equipment
-
Åbo Akademi Functional Printing Center
Toivakka, M. (PI), Rosenholm, J. (PI), Anttu, N. (PI), Bobacka, J. (PI), Huynh, T. P. (PI), Peltonen, J. (PI), Wang, X. (PI), Wilen, C.-E. (PI), Xu, C. (PI), Zhang, H. (PI) & Österbacka, R. (PI)
Faculty of Science and EngineeringFacility/equipment: Facility