Mitochondrial ROS produced via reverse electron transport extend animal lifespan

Filippo Scialò, Ashwin Sriram, Daniel Fernández-Ayala, Nina Gubina, Madis Lohmus, Glyn Nelson, Angela Logan, Helen Cooper, Plácido Navas, Jose Antonio Enríquez, Michael P. Murphy, Alberto Sanz

    Research output: Contribution to journalArticleScientificpeer-review

    277 Citations (Scopus)

    Abstract

    Increased production of reactive oxygen species (ROS) has long been considered a cause of aging. However, recent studies have implicated ROS as essential secondary messengers. Here we show that the site of ROS production significantly contributes to their apparent dual nature. We report that ROS increase with age as mitochondrial function deteriorates. However, we also demonstrate that increasing ROS production specifically through respiratory complex I reverse electron transport extends Drosophila lifespan. Reverse electron transport rescued pathogenesis induced by severe oxidative stress, highlighting the importance of the site of ROS production in signaling. Furthermore, preventing ubiquinone reduction, through knockdown of PINK1, shortens lifespan and accelerates aging; phenotypes that are rescued by increasing reverse electron transport. These results illustrate that the source of a ROS signal is vital in determining its effects on cellular physiology and establish that manipulation of ubiquinone redox state is a valid strategy to delay aging.
    Original languageUndefined/Unknown
    Pages (from-to)725–734
    Number of pages10
    JournalCell Metabolism
    Volume23
    Issue number4
    DOIs
    Publication statusPublished - 2016
    MoE publication typeA1 Journal article-refereed

    Cite this