Abstract
Metastasis is one of the most important factors that lead to poor prognosis in cancer patients, and effective suppression of the growth of primary cancer cells in a metastatic site is paramount in averting cancer progression. However, there is a lack of biomimetic three-dimensional (3D) in vitro models that can closely mimic the continuous growth of metastatic cancer cells in an organ-specific extracellular microenvironment (ECM) for assessing effective therapeutic strategies. Methods: In this metastatic tumor progression model, kidney cancer cells (Caki-1) and hepatocytes (i.e., HepLL cells) were co-cultured at an increasing ratio from 1:9 to 9:1 in a decellularized liver matrix (DLM)/gelatin methacryloyl (GelMA)-based biomimetic liver microtissue in a microfluidic device. Results: Via this model, we successfully demonstrated a linear anti-cancer relationship between the concentration of anti-cancer drug 5-Fluorouracil (5-FU) and the percentage of Caki-1 cells in the co-culture system (R 2 = 0.89). Furthermore, the Poly(lactide-co-glycolide) (PLGA)-poly(ethylene glycol) (PEG)-based delivery system showed superior efficacy to free 5-FU in killing Caki-1 cells. Conclusions: In this study, we present a novel 3D metastasis-on-a-chip model mimicking the progression of kidney cancer cells metastasized to the liver for predicting treatment efficacy. Taken together, our study proved that the tumor progression model based on metastasis-on-a-chip with organ-specific ECM would provide a valuable tool for rapidly assessing treatment regimens and developing new chemotherapeutic agents.
Original language | English |
---|---|
Pages (from-to) | 300-311 |
Number of pages | 1 |
Journal | Theranostics |
Volume | 10 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2020 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Dive into the research topics of 'Metastasis-on-a-chip mimicking the progression of kidney cancer in the liver for predicting treatment efficacy'. Together they form a unique fingerprint.Equipment
-
Åbo Akademi Functional Printing Center
Toivakka, M. (PI), Rosenholm, J. (PI), Anttu, N. (PI), Bobacka, J. (PI), Huynh, T. P. (PI), Peltonen, J. (PI), Wang, X. (PI), Wilen, C.-E. (PI), Xu, C. (PI), Zhang, H. (PI) & Österbacka, R. (PI)
Faculty of Science and EngineeringFacility/equipment: Facility