Abstract
The separation of ammonium bisulfate (ABS) from ammonium sulfate (AS) in aqueous solutions by monovalent ion selective membranes was studied. Optimised usage of these chemicals is both an important and challenging step towards a more efficient CO2 mineralisation process route developed at Åbo Akademi University (ÅA). The membranes were placed in a three or five-compartment electrodialysis stack. Silver, stainless steel and platinum electrodes were tested, of which a combination of Pt (anode) and stainless steel (cathode) electrodes were found to be most suitable. Separation efficiencies close to 100% were reached based on ABS concentrations in the feed solution. The tests were performed with an initial voltage of either 10 V–20 V, but limitations in the electrical power supply equipment eventually resulted in a voltage drop as separation proceeded. Exergy calculations for energy efficiency assessment show that the input exergy (electrical power) is many times higher than the reversible mixing exergy, which indicates that design modifications must be made. Further work will focus on the possibilities to make the separation even more efficient and to develop the analysis methods, besides the use of another anode material.
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | – |
Journal | Geosciences |
Volume | 8 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2018 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Membranes
- Ion-selective membranes
- Ammonium sulphate
- CCS
- CO2 mineral carbonation