Mammalian heat shock factor 1 is essential for oocyte meiosis and directly regulates Hsp90alpha expression

Aïcha Metchat, Malin Akerfelt, Christiane Bierkamp, Virginie Delsinne, Lea Sistonen, Henri Alexandre, Elisabeth S Christians

Research output: Contribution to journalArticleScientificpeer-review


Heat shock transcription factor 1 (HSF1) is the main regulator of the stress response that triggers the transcription of several genes encoding heat shock proteins (Hsps). Hsps act as molecular chaperones involved in protein folding, stability, and trafficking. HSF1 is highly expressed in oocytes and Hsf1 knock-out in mice revealed that in the absence of stress this factor plays an important role in female reproduction. We previously reported that Hsf1(-/-) females produce oocytes but no viable embryos. Consequently, we asked whether oocytes require HSF1 to regulate a particular set of Hsps necessary for them to develop. We find that Hsp90alpha (Hspaa1) is the major HSF1-dependent chaperone inasmuch as Hsf1 knock-out resulted in Hsp90-depleted oocytes. These oocytes exhibited delayed germinal vesicle breakdown (or G(2)/M transition), partial meiosis I block, and defective asymmetrical division. To probe the role of Hsp90alpha in this meiotic syndrome, we analyzed meiotic maturation in wild-type oocytes treated with a specific inhibitor of Hsp90, 17-allylamino-17-demethoxy-geldanamycin, and observed similar defects. At the molecular level we showed that, together with these developmental anomalies, CDK1 and MAPK, key meiotic kinases, were significantly disturbed. Thus, our data demonstrate that HSF1 is a maternal transcription factor essential for normal progression of meiosis.

Original languageEnglish
Pages (from-to)9521-8
Number of pages8
JournalJournal of Biological Chemistry
Issue number14
Publication statusPublished - 3 Apr 2009
MoE publication typeA1 Journal article-refereed


  • Animals
  • Base Sequence
  • Cell Differentiation
  • Cytoplasm/metabolism
  • DNA-Binding Proteins/deficiency
  • Female
  • Gene Expression Regulation
  • HSP90 Heat-Shock Proteins/genetics
  • Heat Shock Transcription Factors
  • MAP Kinase Signaling System
  • Meiosis
  • Mice
  • Mice, Knockout
  • Oocytes/cytology
  • Protein Isoforms/genetics
  • Transcription Factors/deficiency


Dive into the research topics of 'Mammalian heat shock factor 1 is essential for oocyte meiosis and directly regulates Hsp90alpha expression'. Together they form a unique fingerprint.

Cite this