IQGAP1 is a key node within the small GTPase network.

Guillaume Jacquemet, Martin J Humphries

Research output: Contribution to journalArticleScientificpeer-review

19 Citations (Scopus)

Abstract

Coordination of the activity of multiple small GTPases is required for the regulation of many physiological processes, including cell migration. There are now several examples of functional interplay between small GTPase pairs, but the mechanisms that control GTPase activity in time and space are only partially understood. Here, we build on the hypothesis that small GTPases are part of a large, integrated network and propose that key proteins within this network integrate multiple signaling events and coordinate multiple small GTPase activities. Specifically, we identify the scaffolding protein IQGAP1 as a master regulator of multiple small GTPases, including Cdc42, Rac1, Rap1, and RhoA. In addition, we demonstrate that IQGAP1 promotes Arf6 activation downstream of β1 integrin engagement. Furthermore, following literature-curated searches and recent mass spectrometric analysis of IQGAP1-binding partners, we report that IQGAP1 recruits other small GTPases, including RhoC, Rac2, M-Ras, RhoQ, Rab10, and Rab5, small GTPase regulators, including Tiam1, RacGAP1, srGAP2 and HERC1, and small GTPase effectors, including PAK6, N-WASP, several sub-units of the Arp2/3 complex and the formin mDia1. Therefore, we propose that IQGAP1 acts as a small GTPase scaffolding platform within the small GTPase network, and recruits and/or regulates small GTPases, small GTPase regulators and effectors to orchestrate cell behavior. Finally, to identify other putative key regulators of small GTPase crosstalk, we have assembled a small GTPase network using protein-protein interaction databases.
Original languageUndefined/Unknown
Pages (from-to)199–207
JournalSmall GTPases
Volume4
Issue number4
DOIs
Publication statusPublished - 2013
MoE publication typeA1 Journal article-refereed

Cite this