Industrially relevant Radioactive Particle Tracking study on the motion of adsorbent granules suspended in a pilot-scale water–air three-phase fluidized bed

Gabriel Salierno*, Mauricio Maestri, Julia Picabea, Miryan Cassanello, Cataldo De Blasio, María Angélica Cardona, Daniel Hojman, Héctor Somacal

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)

Abstract

The information obtained by one-dimensional Radioactive Particle Tracking is used to make an industrially relevant description of the macroscopic mixing of a three-phase bubble column. The objective is to characterize and compare the solid motion of granular activated carbon (dp = 1 mm) and calcium alginate beads (dp = 5 mm), widely used as adsorbents for pollutants and as support for catalysts, enzymes, and living organisms. The particles are suspended in water with upflowing air into a 0.1 m diameter and a 1 m height bubble column. The liquid–solid suspensions are in batch, and the air superficial velocity ranges within 0.01–0.12 m/s. The solid axial hold-up distribution of the carbon–water–air system is biased towards the bottom of the column, while the alginate–water–air system is more even. The axial dispersion coefficients obtained in both systems have a positive linear behavior within the operating range, which is uncannily marked in the carbon-water-air system, and it is an order of magnitude less than the alginate–water–air system. The contrasts of the two systems are mostly explained as a function of the solid densities. Axial mixing time distribution shows a sharp minimum at the second quartile of the column. Flow regime transition is assessed using information theory.

Original languageEnglish
Pages (from-to)305-316
Number of pages12
JournalChemical Engineering Research and Design
Volume173
DOIs
Publication statusPublished - Sep 2021
MoE publication typeA1 Journal article-refereed

Keywords

  • Activated carbon
  • Calcium alginate
  • Radioactive Particle Tracking
  • Three-phase bubble columns

Fingerprint

Dive into the research topics of 'Industrially relevant Radioactive Particle Tracking study on the motion of adsorbent granules suspended in a pilot-scale water–air three-phase fluidized bed'. Together they form a unique fingerprint.

Cite this