In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes

Ashiq Ahamed, Lili Liang, Wei Ping Chan, Preston Choon Kiat Tan, Nicklaus Tze Xuan Yip, Johan Bobacka, Andrei Veksha, Ke Yin, Grzegorz Lisak*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)

Abstract

The valorization of municipal solid waste incineration bottom and fly ashes (IBA and IFA) as catalysts for thermochemical plastic treatment was investigated. As-received, calcined, and Ni-loaded ashes prepared via hydrothermal synthesis were used as low-cost waste-derived catalysts for in-line upgrading of volatile products from plastic pyrolysis. It was found that both IBA and air pollution control IFA (APC) promote selective production of BTEX compounds (i.e., benzene, toluene, ethylbenzene, and xylenes) without significantly affecting the formation of other gaseous and liquid species. There was insignificant change in the product distribution when electrostatic precipitator IFA (ESP) was used, probably due to the lack of active catalytic species. Calcined APC (C-APC) demonstrated further improvement in the BTEX yield that suggested the potential to enhance the catalytic properties of ashes through pre-treatment. By comparing with the leaching limit values stated in the European Council Decision, 2003/33/EC for the acceptance of hazardous waste at landfills, all the ashes applied remained in the same category after the calcination and pyrolysis processes, except the leaching of Cl from the ESP, which was around the borderline. Therefore, the use of ashes in catalytic reforming application do not significantly deteriorate their metal leaching behavior. Considering its superior catalytic activity towards BTEX formation, C-APC was loaded with Ni at 15 and 30 wt%. The Ni-loading favored an increase in overall oil yield, while reducing the gas yield when compared to the benchmark Ni loaded ZSM catalyst. However, Ni addition also caused the formation of more heavier hydrocarbons (C20–C35) that would require post-treatment to recover favorable products like BTEX. Application of MSW incineration ashes in catalytic reforming of plastic pyrolysis vapor promoted selective BTEX yield without altering the leaching behavior of the ashes.

Original languageEnglish
Article number116681
JournalEnvironmental Pollution
Volume276
DOIs
Publication statusPublished - 1 May 2021
MoE publication typeA1 Journal article-refereed

Keywords

  • Catalytic reforming
  • IBA
  • IFA
  • Plastic
  • Pyrolysis

Fingerprint Dive into the research topics of 'In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes'. Together they form a unique fingerprint.

Cite this