Improved stability and biocompatibility of nanostructured silicon drug carrier for intravenous administration

S Nakki, J Rytkonen, T Nissinen, C Florea, J Riikonen, Paul Ek, HB Zhang, HA Santos, A Narvanen, Xu WJ, VP Lehto

    Research output: Contribution to journalArticleScientificpeer-review

    57 Citations (Scopus)


    Nanotechnology has attracted considerable interest in the field of biomedicine, where various nanopartides (NPs) have been introduced as efficient drug carrier systems. Mesoporous silicon (PSi) is one of the most promising materials in this field due to its low toxicity, good biodegradability, high surface area, tunable pore size and controllable surface functionality. However, recognition by the reticuloendothelial system and particle agglomeration hinder the use of PSi for intravenous applications. The present paper describes a dual-PEGylation method, where two PEG molecules with different sizes (0.5 and 2 kDa) were grafted simultaneously in a single process onto thermally oxidized PSi NPs to form a high-density PEG coating with both brush-like and mushroom-like conformation. The material was characterized in detail and the effects of the dual-PEGylation on cell viability, protein adsorption and macrophage uptakes were evaluated. The results show that dual-PEGylation improves the colloidal stability of the NPs in salt solutions, prolongs their half-lives, and minimizes both protein adsorption and macrophage uptake. Therefore, these new dual-PEGylated PSi NPs are potential candidates for intravenous applications.
    Original languageUndefined/Unknown
    Pages (from-to)207–215
    Number of pages9
    JournalActa Biomaterialia
    Publication statusPublished - 2015
    MoE publication typeA1 Journal article-refereed


    • Biocompatilibity
    • Opsonization
    • Polyethylene glycol
    • Porous silicon nanoparticles

    Cite this