Hydrodeoxygenation of stearic acid and tall oil fatty acids over Ni-alumina catalysts: influence of reaction parameters and kinetic modelling

Klara Jenistova, Imane Hachemi, Päivi Mäki-Arvela, Narendra Kumar, Markus Peurla, Libor Čapek, Johan Wärnå, Dmitry Murzin

Research output: Contribution to journalArticleScientificpeer-review

78 Citations (Scopus)


Kinetics in the hydrodeoxygenation of stearic acid was investigated over Ni-γ-Al2O3 catalyst. The main variables were catalyst prereduction mode, reaction atmosphere and hydrogen pressure in the total pressure range of 7–30 bar. The results revealed that high conversion, 99% in 360 min and high selectivity to heptadecane, 97% were achieved at 300 °C under 30 bar total pressure. The yield of an intermediate hydrogenation product, stearyl alcohol increased with increasing hydrogen pressure as expected. Higher reaction rates and conversion levels were also achieved with the prereduced catalyst and carrying out the reaction in the presence of hydrogen. As a comparison to stearic acid, hydrodeoxygenation of tall oil fatty acids, an industrial feedstock was successfully demonstrated with Ni-γ-Al2O3 under the same conditions. A kinetic model including the pressure effect was derived and applied for data with Ni-γ-Al2O3 as well as for Pd/C, Ni-H-Y-80 and Ni/SiO2 catalysts. The model described well the kinetic data.
Original languageUndefined/Unknown
Pages (from-to)401–409
JournalChemical Engineering Journal
Publication statusPublished - 2017
MoE publication typeA1 Journal article-refereed


  • Chemical Engineering

Cite this