Holistic Evaluation Method for Concept-Level Study of Power-to-Liquids Technologies for e-Kerosene Production

Research output: Contribution to journalArticleScientificpeer-review

Abstract

The growing interest in power-to-liquids (PtL) due to the worsening climate crisis is leading to a growing number of new technologies and process concepts being developed, including electrolyzers, liquid synthesis and fuel upgrading processes, along with novel ways of integrating these process units. To make sense of the technologies and systematically assess them, while attaining an understanding of the unique characteristics of each technology and concept, a levelized multicriteria evaluation framework is needed. The present work aims to provide a holistic, hierarchical evaluation method for e-kerosene production pathways and presents a novel and comprehensive approach to evaluating technological efficiency, environmental impact, and economic performance of industrial processes. It explores a selection of indicators, grouped under the 3E performance criteria (engineering, economic and environmental), relevant for PtL technologies for e-kerosene production, and uses them in combination with the Analytical Hierarchy Process to construct a weighted evaluation framework. Focus is put on production of e-kerosene, due to the challenges faced by the aviation industry regarding decarbonization. A spreadsheet modeling approach for generating the inputs to the framework is developed and a process based on the Fischer-Tropsch technology is used as a case-study to demonstrate the modeling approach and evaluation framework. The evaluation framework was developed in previous work of the authors, while the present work provides a deeper elaboration of the framework’s background and offers an initial analysis of its application based on the herein described case study. A detailed description of the methodology is provided. The evaluated process displayed a balanced performance in respect to the indicators, which was expected. A rather heavy weighing toward a few indicators was observed.

Original languageEnglish
Pages (from-to)20264-20286
Number of pages23
JournalIndustrial & Engineering Chemistry Research
Volume63
Issue number46
DOIs
Publication statusPublished - 20 Nov 2024
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Holistic Evaluation Method for Concept-Level Study of Power-to-Liquids Technologies for e-Kerosene Production'. Together they form a unique fingerprint.

Cite this