TY - JOUR
T1 - High-temperature corrosion due to lead chloride mixtures simulating fireside deposits in boilers firing recycled wood
AU - Kinnunen, Hanna
AU - Lindberg, Daniel
AU - Laurén, Tor
AU - Uusitalo, M
AU - Bankiewicz, Dorota
AU - Enestam, S
AU - Yrjas, Patrik
PY - 2017
Y1 - 2017
N2 - One of the biggest operational concerns in recycled wood combustion, is the risk for formation of low melting, corrosive deposits. The deposits present on low-temperature heat transfer surfaces (material temperature < 400 degrees C) are composed of alkali metals, chlorine, sulphur, heavy metals or, as is often the case, a mixture of these. K2SO4 is commonly regarded as non-corrosive, but there have been indications that K2SO4 may worsen the PbCl2 induced corrosion. Consequently, a more detailed study with these compounds was of very high interest. This paper reports the results obtained from 24-hour isothermal laboratory corrosion tests with PbCl2 mixed with either K2SO4 or SiO2. The tests were carried out at 350 degrees C using low alloy steel (16Mo3). The interaction between PbCl2 and K2SO4 was investigated in a furnace with a temperature gradient.As a result, a mixture of PbCl2 and K2SO4 is more corrosive than PbCl2 mixed with SiO2. Corrosion was noticed below the deposit's first melting temperature. However, for a mixture of FeCl2, KCl and PbCl2, the first melting temperature is below 350 degrees C which could explain the high oxidation rate observed below the first melting temperature of the deposit. A solid phase or a mixture of phases with the composition of K3Pb2(SO4)(3)Cl was observed in the tests with SEM/EDX for the first time. (C) 2017 Elsevier B.V. All rights reserved.
AB - One of the biggest operational concerns in recycled wood combustion, is the risk for formation of low melting, corrosive deposits. The deposits present on low-temperature heat transfer surfaces (material temperature < 400 degrees C) are composed of alkali metals, chlorine, sulphur, heavy metals or, as is often the case, a mixture of these. K2SO4 is commonly regarded as non-corrosive, but there have been indications that K2SO4 may worsen the PbCl2 induced corrosion. Consequently, a more detailed study with these compounds was of very high interest. This paper reports the results obtained from 24-hour isothermal laboratory corrosion tests with PbCl2 mixed with either K2SO4 or SiO2. The tests were carried out at 350 degrees C using low alloy steel (16Mo3). The interaction between PbCl2 and K2SO4 was investigated in a furnace with a temperature gradient.As a result, a mixture of PbCl2 and K2SO4 is more corrosive than PbCl2 mixed with SiO2. Corrosion was noticed below the deposit's first melting temperature. However, for a mixture of FeCl2, KCl and PbCl2, the first melting temperature is below 350 degrees C which could explain the high oxidation rate observed below the first melting temperature of the deposit. A solid phase or a mixture of phases with the composition of K3Pb2(SO4)(3)Cl was observed in the tests with SEM/EDX for the first time. (C) 2017 Elsevier B.V. All rights reserved.
KW - Superheater
KW - Lead potassium chloride
KW - Waste wood combustion
KW - Furnace wall
KW - Superheater
KW - Lead potassium chloride
KW - Waste wood combustion
KW - Furnace wall
KW - Superheater
KW - Lead potassium chloride
KW - Waste wood combustion
KW - Furnace wall
U2 - 10.1016/j.fuproc.2017.07.017
DO - 10.1016/j.fuproc.2017.07.017
M3 - Artikel
SN - 0378-3820
VL - 167
SP - 306
EP - 313
JO - Fuel Processing Technology
JF - Fuel Processing Technology
ER -