TY - JOUR
T1 - Graphite recovery from waste Li-ion battery black mass for direct re-use
AU - Chernyaev, Alexander
AU - Kobets, Anna
AU - Liivand, Kerli
AU - Tesfaye, Fiseha
AU - Hannula, Pyry-Mikko
AU - Kallio, Tanja
AU - Hupa, Leena
AU - Lundström, Mari
PY - 2024/3
Y1 - 2024/3
N2 - Graphite was recovered from two leached (H2SO4 = 2 M, 60 °C, t = 3 h, Fe3+ = 2 g/L) Li-ion battery black mass concentrates with minimized energy consumption. One black mass originated from a mixture of mobile device and power tool batteries, and another from a single electric vehicle battery. The leach residues were pyrolyzed (800 °C, t = 1 h, Ar atmosphere) to remove the polyvinylidene fluoride (PVDF) binder and other non-metallic fractions. The black mass, its leach residue, and pyrolyzed residue were characterized using inductively coupled plasma-optical emission spectrometry (ICP-OES), ion chromatography (IC), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy, and N2 adsorption/desorption. After hydrometallurgical recycling and pyrolysis, the main post-metallurgical black mass impurities were cobalt oxide, iron, acid-resistant boehmite (AlO(OH)), and silicon dioxide. The pyrolysis resulted in electrolyte and binder removal, affected the crystallinity of the remaining boehmite. The recovered graphite-rich residue with impurities identified was tested as an anode in half-cells vs. metal Li. The average specific capacities of recovered graphite-rich residues from both sources were 350 and 250 mAh g-1 at 0.1C and their capacity retention after 100 cycles was high (80%) suggesting rather slow deterioration and hence the proposed recycling route being promising for the graphite reuse in new
Li-ion batteries.
AB - Graphite was recovered from two leached (H2SO4 = 2 M, 60 °C, t = 3 h, Fe3+ = 2 g/L) Li-ion battery black mass concentrates with minimized energy consumption. One black mass originated from a mixture of mobile device and power tool batteries, and another from a single electric vehicle battery. The leach residues were pyrolyzed (800 °C, t = 1 h, Ar atmosphere) to remove the polyvinylidene fluoride (PVDF) binder and other non-metallic fractions. The black mass, its leach residue, and pyrolyzed residue were characterized using inductively coupled plasma-optical emission spectrometry (ICP-OES), ion chromatography (IC), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy, and N2 adsorption/desorption. After hydrometallurgical recycling and pyrolysis, the main post-metallurgical black mass impurities were cobalt oxide, iron, acid-resistant boehmite (AlO(OH)), and silicon dioxide. The pyrolysis resulted in electrolyte and binder removal, affected the crystallinity of the remaining boehmite. The recovered graphite-rich residue with impurities identified was tested as an anode in half-cells vs. metal Li. The average specific capacities of recovered graphite-rich residues from both sources were 350 and 250 mAh g-1 at 0.1C and their capacity retention after 100 cycles was high (80%) suggesting rather slow deterioration and hence the proposed recycling route being promising for the graphite reuse in new
Li-ion batteries.
KW - Graphite
KW - residue
KW - leaching
KW - Li-ion battery
KW - recycling
U2 - 10.1016/j.mineng.2024.108587
DO - 10.1016/j.mineng.2024.108587
M3 - Article
SN - 0892-6875
VL - 208
SP - 1
EP - 12
JO - Minerals Engineering
JF - Minerals Engineering
M1 - 108587
ER -