Fast algorithms for fragmentable items bin packing

Benjamin Byholm, Ivan Porres Paltor

Research output: Contribution to journalArticleScientificpeer-review

11 Citations (Scopus)
44 Downloads (Pure)


Bin packing with fragmentable items is a variant of the classic bin packing problem where items may be cut into smaller fragments. The objective is to minimize the number of item fragments, or equivalently, to minimize the number of cuts, for a given number of bins. Models based on packing fragmentable items are useful for representing finite shared resources. In this article, we present improvements to approximation and metaheuristic algorithms to obtain an optimality-preserving optimization algorithm with polynomial complexity, worst-case performance guarantees and parametrizable running time. We also present a new family of fast lower bounds and prove their worst-case performance ratios. We evaluate the performance and quality of the algorithm and the best lower bound through a series of computational experiments on representative problem instances. For the studied problem sets, one consisting of 180 problems with up to 20 items and another consisting of 450 problems with up to 1024 items, the lower bound performs no worse than 5 / 6. For the first problem set, the algorithm found an optimal solution in 92% of all 1800 runs. For the second problem set, the algorithm found an optimal solution in 99% of all 4500 runs. No run lasted longer than 220 ms.

Original languageUndefined/Unknown
Pages (from-to)697–723
JournalJournal of Heuristics
Issue number5
Publication statusPublished - 2018
MoE publication typeA1 Journal article-refereed

Cite this