Fabrication of biohybrid cellulose acetate-collagen bilayer matrices as nanofibrous spongy dressing material for wound-healing application

Giriprasath Ramanathan, Liji Sobhana Seleenmary Sobhanadhas, Grace Felciya Sekar Jeyakumar, Vimala Devi, Uma Tiruchirapalli Sivagnanam*, Pedro Fardim*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

71 Citations (Scopus)

Abstract

Tissue engineering is currently one the fastest growing engineering fields, requiring fabrication of advanced and multifunctional materials to be used as scaffolds or dressing for tissue regeneration. In this work, a bilayer matrix was fabricated by electrospinning of a hybrid cellulose acetate nanofibers (CA) containing bioactive latex or Ciprofloxacin over highly interconnected collagen (CSPG) 3D matrix previously obtained by a freeze-drying process. The bilayer matrix was fabricated with a nanofibrous part as the primary (top) layer and a spongy porous part as the secondary (bottom) layer by combining electrospinning and freeze-drying techniques to enhance the synergistic effect of both materials corresponding to physical and biological properties. The final material was physicochemically characterized using Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The bilayer matrix exhibited nanofibrous and 3D porous structure with properties such as high porosity, swelling, and stability required for soft-tissue-engineering applications. Furthermore, the in vitro biological and fluorescence properties of the matrix were tested against NIH 3T3 fibroblast and human keratinocyte (HaCaT) cell lines and showed good cell adhesion and proliferation over the bilayer matrix. Thus, the synergistic combination of nanofibrous material deposition onto to the collagenous porous material has proved efficient in the fabrication of a bilayer matrix for skin-tissue-engineering applications.
Original languageEnglish
Pages (from-to)2512-2524
Number of pages13
JournalBiomacromolecules
Volume21
Issue number6
DOIs
Publication statusPublished - 28 Apr 2020
MoE publication typeA1 Journal article-refereed

Keywords

  • Wound-Healing
  • Cellulose
  • tissue regeneration
  • nanofibers

Fingerprint

Dive into the research topics of 'Fabrication of biohybrid cellulose acetate-collagen bilayer matrices as nanofibrous spongy dressing material for wound-healing application'. Together they form a unique fingerprint.

Cite this