Abstract
Herein electrosynthesized ZnO nanoparticles (ZnO NPs) agents to largely improve functional bio-interlayer organic field-effect transistor (FBI-OFET) biosensors stability are investigated. For a proof-of-principle, streptavidin (SA) was chosen as the capturing biomolecule to sense biotin and poly-3-hexylthiophene (P3HT) served as channel material. The ZnO NPs were prepared and integrated into the FBI-OFET architecture by means of a straightforward and versatile procedure. To this end, ZnO NPs were mixed with an SA solution and the resulting aqueous suspension was readily spin-coated onto the SiO2 gate dielectric. The P3HT film was spin-coated on the SA-ZnO NPs layer afterwards with the whole fabrication procedure taking no more than 30 min. The FBI-OFET biosensors bearing the ZnO NPs exhibited a shelf life exceeding one year, while the bare ones failed to work after few weeks. Moreover, the ZnO NPs enabled a two orders of magnitude increase in field-effect mobility while the already proven very good sensing performances were retained. The electrical and XPS characterization of the ZnO NPs based functional bio-interlayer provided information about the role of the nanostructured oxide on the improved device stability and a plausible mechanism for this occurrence is derived accordingly.
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | 210–217 |
Number of pages | 8 |
Journal | Sensors and Actuators B: Chemical |
Volume | 274 |
DOIs | |
Publication status | Published - 2018 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Zinc oxide
- Functional bio-interlayer
- Field-effect transistor sensors
- Extended lifetime
- Poly-(3-hexylthiophene)