Electrospinning of Electroconductive Water-Resistant Nanofibers of PEDOTPSS, Cellulose Nanofibrils and PEO: Fabrication Characterization, and Cytocompatibility

Rose-Marie Latonen, Jose Antonio Wrzosek Cabrera, Sara Lund, Sergey Kosourov, Sindhujaa Vajravel, Zhanna Boeva, Xiaoju Wang, Chunlin Xu, Yagut Allahverdiyeva

Research output: Contribution to journalArticleScientificpeer-review

12 Citations (Scopus)
36 Downloads (Pure)


Electrically conductive composite nanofibers were fabricated using poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT–PSS) and cellulose nanofibrils (CNFs) via the electrospinning technique. Poly(ethylene oxide) (PEO) was used to assist the electrospinning process, and poly(ethylene glycol) diglycidyl ether was used to induce chemical cross-linking, enabling stability of the formed fibrous mats in water. The experimental parameters regarding the electrospinning polymer dispersion and electrospinning process were carefully studied to achieve a reproducible method to obtain bead-free nanofibrous mats with high stability after water contact, with an electrical conductivity of 13 ± 5 S m–1, thus making them suitable for bioelectrochemical applications. The morphology of the electrospun nanofibers was characterized by scanning electron microscopy, and the C/S ratio was determined with energy dispersive X-ray analysis. Cyclic voltammetric studies showed that the PEDOT–PSS/CNF/PEO composite fibers exhibited high electroactivity and high stability in water for at least two months. By infrared spectroscopy, the slightly modified fiber morphology after water contact was demonstrated to be due to dissolution of some part of the PEO in the fiber structure. The biocompatibility of the PEDOT–PSS/CNF/PEO composite fibers when used as an electroconductive substrate to immobilize microalgae and cyanobacteria in a photosynthetic bioelectrochemical cell was also demonstrated.
Original languageEnglish
Pages (from-to)483-493
Number of pages11
JournalACS Applied Bio Materials
Issue number1
Publication statusPublished - 2020
MoE publication typeA1 Journal article-refereed

Cite this